

Safeguards Instrumentation for Future Nuclear Fuel Cycles

Marius Stein CANBERRA France

> Tokai, Japan November 13 – 15, 2007

Nuclear Power – A Growing Concern

- Increased discussions on the civil use of nuclear energy
- Driven by economical and environmental concerns
- Proliferation of sensitive nuclear technologies and materials
- Need for alternative approaches to support the Nuclear Renaissance:
 - New nuclear reactor technologies that include built-in proliferation resistance features (GIF, INPRO)
 - Multi-national fuel cycle models (MNA, GNEP)
 - Must take into consideration both safety and economic profitability
 - Determine the impact on future international safeguards and treaty verification support, as well as the instrumentation that will support it
- Long-term perspective
 - Challenges
 - Opportunities

Overview

- Factors impacting future non-proliferation and safeguards policy
- Future safeguards instrumentation
- The safeguards instrumentation development path
- Conclusions

4

Future Non-proliferation and Safeguards Policy

Increase use of nuclear power – Nuclear Renaissance

- Increasing energy need of industrializing/industrialized states
- Economic advantages and sustainability
- CO₂ emission free
- Globalization of energy markets, including nuclear
- Growing proliferation concerns
- New challenges for non-proliferation policy
 - Atoms for Peace, Non-proliferation Treaty
 - Concentration of sensitive technologies (enrichment, reprocessing)
 - Broadening safeguards approach

Multi-national Approaches (MNA)

Concentration of sensitive technologies

- Enrichment
- Reprocessing
- Multi-national framework
 - Supplier countries
 - Recipient countries
- Success dependent on credible assurance of supply
- Impact on non-proliferation and safeguards policy:
 - Safeguards in NWS?
- Shift towards safeguards as universal standard in ALL countries?

Integrated Safeguards

Shift from traditional safeguards to AP and IS

- From quantitative to information-driven, qualitative approach
- Correctness and completeness of declarations
- State-level conclusions to focus efforts and resources
- Use of broader information sources to complement traditional safeguards
- Shift to continue through next two decades
- How to adapt it over time?
 - Geopolitical changes, e.g. European Community

New Nuclear Technologies

Fourth generation nuclear reactors

Proliferation Resistance

That characteristic of a nuclear system that impedes the diversion or undeclared production of nuclear material, or misuse of technology, by States in order to acquire nuclear weapons or other nuclear explosive devices

Safeguardability

Ease of which a system can be effectively and efficiently put under international safeguards

Emerging technologies of sensitive nature

E.g., advanced laser enrichment techniques

Future Safeguards Instrumentation

- Implementation of non-proliferation and safeguards policy supported by the IAEA inspection regime
- IAEA inspectors supported by safeguards instrumentation
 - Traditional safeguards: attended, unattended, remote
 - AP (Complementary Access): portable, versatile
 - Very user specific
- Policy changes impact set and use of instrumentation
 - Opportunities new and emerging technologies
 - Challenges effective and efficient development and use

AP Instrumentation

Instrumentation significantly different from traditional safeguards equipment

- Not verifying declared values
- Not knowing what to expect
- Location tagging important for integrated analysis/cross matching
- Fundamental difference in philosophy
 - Wide-ranging capabilities
 - (Near) Real-time data acquisition/analysis
 - System combination (NDA + sample analysis + ...)
 - Ease of use

4th Generation Reactor Safeguards Instrumentation

Safeguards by Design

- Planning of cabling
- Efficient on-site inspection time
- Ease of maintenance access
- Remote monitoring
- Wireless safeguards
- Synergies beyond safeguards
 - Physical Protection
 - Personnel safety
 - Management tools

Multi-customer Approach

Independent authentication of separate data sets

- Wide-ranging synergies not only in the use but also in the development/procurement of systems
 - Example: UF6 sample measurement
 - Real-time laser measurement vs. destructive analysis with mass spectrometry
 - Operator at least as interested in solution as safeguards authorities
- Need for traditional safeguards measures
 - Shift towards IS and state-level conclusions
 - But: infrastructure might be needed in case of political changes
 - Infrastructure can support both traditional and AP safeguards
 - Multi-customer approach mitigates cost implication

Future Development Path

Question: do new needs call for new development infrastructure?

Today: outsourcing of research and development with support of extra-budgetary assistance of MSSPs

- Niche market
- High reliability, unique requirements

Shift towards multi-customer approach might call for changes

Possible venues:

- IAEA as champion of development in-house w/ later commercialization
- Shifting more responsibilities to operator/nuclear industry while providing oversight
- "Traditional" approach most effective?
- Novel Technologies Approach
 - Information-driven safeguards will expand, need for new solutions
 - New/novel technologies need to be integrated into safeguards approach
 - Strong network of partners (R&D, private sector) needed

Conclusions

Dilemma: implementation lies up to 20 years ahead but decisions have to be made in the near future

- Safeguards by design
- Synergies
- Multi-customer approach
- Safeguards authorities cannot act in a vacuum
- Early involvement of all parties
- Continuous process
- Balanced approach
- Goal: new, synergetic, effective and efficient standard for nuclear safeguards

